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Abstract. Freenet, a fully decentralized publication system designed for
censorship-resistant communication, exhibits long delays and low success
rates for finding and retrieving content. In order to improve its perfor-
mance, an in-depth understanding of the deployed system is required.
Therefore, we performed an extensive measurement study accompanied
by a code analysis to identify bottlenecks of the existing algorithms and
obtained a realistic user model for the improvement and evaluation of
new algorithms.
Our results show that 1) the current topology control mechanisms are
suboptimal for routing and 2) Freenet is used by several tens of thousands
of users who exhibit uncharacteristically long online times in comparison
to other P2P systems.

1 Introduction

Systems that allow users to communicate anonymously, and to publish data
without fear of retribution, have become ever more popular in the light of re-
cent events1. Freenet [1–3] is a widely deployed completely decentralized system
focusing on anonymity and censorship-resilience. In its basic version, the Open-
net mode, it provides sender and receiver anonymity but establishes connections
between the devices of untrusted users. In the Darknet mode, nodes only con-
nect to nodes of trusted parties. Freenet aims to achieve fast message delivery
over short routes by arranging nodes in routable small-world network. However,
Freenet’s performance has been found to be insufficient, exhibiting long delays
and frequent routing failures [4].

In this paper, we investigate the reasons for the unsatisfactory performance
of the deployed Freenet. The evaluation of Freenet so far has mainly been based
on theoretical analyses and simulations, relying on vague assumptions about the
user behavior. Such analytical or simulative user models, however, often differ
significantly from reality. We consequently measured the deployed system to shed
light on two critical points. First, we analyzed the topology of Freenet and its
impact on the routing performance. In particular, we considered the neighbor
selection in the Opennet and the interaction between Opennet and Darknet.

1 http://www.theguardian.com/world/the-nsa-files
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Secondly, we measured the user behavior in Freenet with regard to number of
users, churn behavior, and file popularity.

Our results indicate that the real-world topology differs largely from the
assumptions made in the design, thus identifying a potential reason for the lack
of performance. Over a period of 8 weeks, we discovered close 60,000 unique
Freenet installations. With respect to their online behavior, the Freenet users
exhibit a medium session length of more than 90 minutes, which is slightly
longer than in other Peer-to-Peer systems. The session length distribution can
be well modeled by a lognormal distribution and a Weibull distribution.

The results were obtained using both passive and active large-scale monitor-
ing adapted to deal with the specific constraints of the Freenet protocol. They
provide new insights into the actual workings of Freenet and can be used to
design improved algorithms.

2 Background

In this Section, we introduce Freenet and present related work on measurements
in P2P systems in general.

2.1 Freenet

Freenet was originally advertised as a censorship-resilient publication system [1,
2], referred to as Opennet. During the last years, the system has been extended
to include a membership-concealing Darknet [3], where connections are only
established to trusted users. Furthermore, the functionalities of Freenet have
been extended beyond simple publication of content: Freesites, complete web-
sites hosted in Freenet, offer the possibility to store and retrieve vast amounts
of information2. An instant messaging system3 and an email system4 have been
built on top of Freenet as well. All of these components use the same application-
independent algorithms and protocols for storing, finding, and retrieving content,
which are discussed in the following. First, we explain how users and files are
identified in Freenet. Afterwards, we discuss how data is stored and retrieved,
before detailing how the topology of Opennet and Darknet is created. Our de-
scriptions are based upon [1,2] for the Opennet, and [3] for the Darknet, as well
as on the source code at the time of the respective measurement.

In Freenet, users and files are identified and verified using cryptographic keys.
A user’s public and private key are created upon initialization of her node and
used to sign published files. In addition, each node has a location, i.e., a key
from the key space that files are mapped to. In analogy to a peer’s identifier in
a distributed hash table, Freenet nodes are responsible for storing files whose
key is close to their location. For files, various keys exist that all share the
same key space derived from the SHA-1 hash function: The content hash key
2 https://wiki.freenetproject.org/Freesite
3 https://freenetproject.org/frost.html
4 https://freenetproject.org/freemail.html
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(CHK ) is the hash of the file itself and can be used for checking its integrity.
Keyword signed keys (KSK s) are the hash of a descriptive human-readable string
enabling keyword searches. The signed subspace key (SSK ) contains the author’s
signature for validating a file’s origin. Recently, SSK s are often replaced by
updateable subspace keys (USK s), which allow versioning of files. Public keys,
required for the validation of signatures, can be obtained directly from the owner
or from Freenet indexes, i.e., Freesites that provide lists of publicly available files,
their descriptions, and keys.

File storage, discovery, and retrieval is based on a deterministic routing
scheme, a distance-directed depth-first search. Unless a node can answer a re-
quest, it forwards the message to its neighbor whose location is closest to the
target key. Each request is identified by a random message ID enabling nodes to
detect and prevent loops. In case a node cannot forward the message to another
neighbor, backtracking is applied (see [1]).

During a storage request, the file is stored by any node on the path whose
location is closer to the file key than any of its neighbors, by the last node on
the path, and by any node that was online for at least 20 hours during the
last two days. When a file is found, it is sent back to the requesting node on
the inverse path. The contact information of the responding node is added but
probabilistically changed by any node on the path to conceal the origin’s address.
This should provide plausible deniablility, i.e., uncertainty which node actually
provided the file.

In Opennet and Darknet, the overlay topology is established differently.
Opennet nodes send join requests to publicly known seed nodes that forward
the request based on the joining node’s location. The endpoints of such requests
can be added as neighbors. The maximum number of neighbors depends on a
node’s bandwidth. Binding the degree of a node to the bandwidth provides an
incentive to contribute more bandwidth because high-degree nodes receive a bet-
ter performance on average.5. Based on their performance in answering requests,
neighbors can also be dropped to make room for new ones. In the Darknet mode,
nodes only connect to trusted contacts, which have to be added manually. In-
stead of accepting new neighbors with close locations, Darknet nodes adapt their
location to establish a better embedding into the key space [5]. Both the neigh-
bor selection in Opennet and the location adaption in Darknet are supposed to
structure the network such that the probability to have a neighbor at distance
d scales with 1/d for d ≥ c > 0 for some constant c. The design is motivated by
Kleinberg’s model: Nodes are arranged in a m-dimensional lattice with short-
range links to those closest on the lattice. Furthermore, nodes at distance x are
chosen as long-range contacts with a probability proportional to 1/dr. Kleinberg
showed that the routing is of polylog complexity if and only if r = m equals the
number of dimensions [6]. Consequently, a distance distribution between neigh-
bors that asymptotically scales with 1/d would be optimal for the 1-dimensional
namespace of Freenet.

5 https://wiki.freenetproject.org/Configuring_Freenet#Connecting_to_the_
Opennet
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2.2 Related Work

Most scientific publications on Freenet focus on the performance [5, 7] and at-
tack resilience [8–10] of the routing algorithm. Their evaluations are based on
theoretical analysis, simulations, and small-sized testbeds. The simulations in
the original paper are based upon rather unrealistic assumptions such as no or
uniform node churn, uniform content popularity, and uniform storage capaci-
ties [1,3]. So far, only two measurement studies have been performed in the real
system, both with a rather small scope: The first, conducted in 2004, was an
18 days passive monitoring of the connection duration between neighbors. The
average observed connection time was 34 seconds, indicating that Freenet nodes
frequently change neighbors [11]. The second study, aiming at an estimation of
Freenet’s network size, was performed in 2009. For measurement purposes, 80
Freenet nodes were inserted into the network. These nodes were then manip-
ulated to drop and establish new connections at a higher rate to increase the
number of discovered nodes. During 80 hours of measurements, 11, 000 unique
node location were found. The number of concurrently online nodes was mea-
sured to be between 2, 000 and 3, 000 [4]. Hence, measurements on Freent so far
are outdated and focus on single aspects of the protocol or user behavior only.
The results are too general to suggest improvements and provide an accurate
churn model for evaluating them. Alternative designs to Freenet for anonymous
or membership-concealing P2P systems have been discussed in [4, 12–14]. How-
ever, they have not been widely deployed or rely on unstructured systems, which
do not allow efficient resource discovery.

In contrast, there is vast related work on measurements in P2P systems in
general. We briefly summarize their results regarding the user behavior in order
to compare Freenet users to users of large-scale file-sharing networks without
enhanced security protocols. The most frequently studied aspects of such systems
are network size and churn. For the latter, the session length, i.e., the time a
node stays online at a time, is of particular interest. The network size is usually
determined by counting all nodes encountered during a certain time period. A
subset of these nodes is then regularly contacted to track their online time and
then derive a churn model from the observed data. How such a concept can be
realized highly depends on the system under observation. In Freenet, contacting
arbitrary nodes other than a node’s direct neighbors is not possible. Hence,
existing approaches can not be applied directly and are thus not discussed here
in detail. The churn behavior of users has been measured in most large-scale P2P
systems, in particular Napster [15], Gnutella [15], FastTrack [16], Overnet [17],
Bittorrent [18, 19], and KAD [20, 21]. The observed median session length lies
between 1 minute and 1 hour [22]. Measurements indicate that the shape of the
session length distribution resembles a power-law: Exponential [18], Pareto [23],
Weibull [21], and lognormal [21] distributions have been fitted. Our results show
that the Freenet session length can be fitted reasonably well to a lognormal
distribution, but the median online time is slightly higher than in all existing
measurements of P2P-based systems.



5

3 Methodology

The data required for addressing most questions could be obtained using passive
monitoring, i.e., using nodes that only observe the system and output additional
log information. The analysis of users’ churn behavior required us to perform
active monitoring, i.e., running instrumented nodes that periodically request
information.

We used Freenet version 1407 for all measurements prior to August 2012,
version 1410 for measurements in September and October 2012, version 1442
for measurements in Spring 2013 and version 1457 for all later measurements6.

In the remainder of this Section, we detail the two different monitoring ap-
proaches and describe how we extracted the desired information from the col-
lected logs.

Locations of monitoring nodes were chosen uniformly at random unless stated
otherwise. More sophisticated placement strategies would require additional knowl-
edge of the global topology, which is not straightforward to obtain. The number
of monitoring nodes varies over the experiments, depending both on the type
of the measurement (e.g. local samples vs. global information needed) and the
available resources at the time.

3.1 Passive Monitoring

We applied passive monitoring by inserting a set M of monitoring nodes in
the network. They executed the normal code and followed the protocol like any
regular node. We extended the Freenet logging mechanism to store all messages
sent to and received from other nodes. The logged data allowed us to observe
all changes in the neighborhood as well as all requests and the corresponding
replies passing through these monitoring nodes.

Passive monitoring was used to collect data for the analysis of the neighbor
selection, for determining the network size and the origin of users, for investi-
gating file popularity and user activity, and for analyzing the impact of parallel
Darknets.

Distance and Degree Distribution : The goal was to find out if the distances
between neighbors in the overlay actually follow the distribution from Kleinberg’s
model [6]. In addition, we measured the degree distribution, which influences the
routing success observed in the system.

Upon establishing a connection, nodes provide each other with their own lo-
cation and the locations of their neighbors. Whenever the neighborhood changes,
all neighbors are informed of the change. Hence, by logging all such messages,
we obtained the degree of all neighbors of monitoring nodes and the distances
between them and their neighbors. Denote the measurement duration by T . We
took snapshots of the neighborhood of our monitoring nodes each t time units.

6 https://github.com/freenet/fred-staging/releases
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Let Gk = (Vk, Ek) be a snapshot after t · k minutes for k = 0 . . .K with
K = bT/tc. The node set Vk consisted of our monitoring nodesM , the neighbors
of nodes inM , and their neighbors. The subgraph Gk was induced, i.e., the edge
set Ek consisted of all edges between nodes in Vk. We determined the empirical
distance distribution of neighbors as the weighted average over all snapshots. Let
l(e) be the distance between the endpoints of edge e. Recall that for any set A,
the indicator function 1A(x) is 1 if x ∈ A and 0 otherwise. Then the empirical
distance distribution L̂ was computed by

P (L̂ ≤ x) =
K∑
k=0

∑
e∈Ek

1[−∞,x)(l(e))∑K
k=0 |Ek|

. (1)

When obtaining the degree distribution, our own nodes might not represent
a good sample for the average user with regard to bandwidth and uptime. Since
both influence the degree of a node, we only considered the sets Nk(m) \ M
of neighbors of m ∈ M at time t · k. Let deg(v) denote the degree of a node
v. Analogously to the distance distribution, the empirical degree distribution of
neighbors D̂′ was then obtained as 7

P (D̂′ = x) =

K∑
k=0

∑
m∈M

∑
v∈Nk(m)\M

1x(deg(v))∑K
k=0

∑
m∈M |Nk(m)|

. (2)

Then, note the probability of being a neighbor of a node is proportional to the
degree of a node. If the degree distribution of the network is D, the degree
distribution D′ of randomly chosen neighbors is given by

P (D′ = x) =
xP (D = x)

E(D)
. (3)

Our measurements provided the empirical degree distribution of neighbors D̂′.
So an empirical degree distribution D̂ was obtained by solving a system of linear
equations based on Eq. 3. Let dm denote the maximal observed degree. The
system of linear equations consisted of dm + 1 equations with dm + 1 variables
P (D̂ = x) for x = 1 . . . dm and E(D̂). The first dm equations were derived from
transforming Eq. 3 to xP (D = x)−P (D′ = x)E(D) = 0. The last equation used
that D̂ is a probability distribution, so that

∑dm
x=1 P (D̂ = x) = 1. The system

of equations thus could be solved using Gaussian elimination.

Darknet : In order to evaluate the impact of small Darknets with few links into
the Opennet, we manually created a Darknet topology consisting of 10 nodes.
These nodes were connected in a ring topology of which 4 nodes established
a connection to a monitoring node m that participated in the Opennet. The
node m logs all file requests and the corresponding responses that pass through
7 It is intended that nodes in the intersection of two neighborhoods are counted mul-
tiple times in order to obtain D̂ from D̂′
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it. Based on the logs, we then distinguish between requests forwarded into the
Opennet by m and requests forwarded into the Darknet. The difference of the
success rate between forwarding to Opennet and to Darknet nodes then indicates
the impact of such small Darknets.

Network Size and User Origin : We logged Freenet locations, IP addresses and
ports of the Opennet neighbors of monitoring nodes. Each Opennet node is
uniquely characterized by a persistent location, in contrast to Darknet nodes,
which change location in order to adapt to the topology. For the Opennet, we
hence uniquely identify Freenet instances by their location. Note that a user
participating with multiple instances is counted several times. In contrast to the
location, the IP address of a user changes over time. Furthermore, a Freenet
node might advertise several IP port combinations. We logged the IP address
only for obtaining the geolocation of users, not as an identifying feature.

Popularity Analysis : All requests for files seen by a monitoring node were logged,
in particular the routing key of each file. We then obtained a popularity score for
a key k by dividing the number of requests for k by the total number of requests.

3.2 Active Monitoring

We used active monitoring for tracking the online times of nodes. In the active
mode, monitoring nodes periodically sent messages into the network to determine
if a certain node is online. This approach allowed us to determine to what extend
it is possible to track a user’s online time in Freenet. Also, we established a
churn model for Freenet users including session length, intersession length, and
connectivity factor.

Up to September 2012, using messages of type FNPRoutedPing allowed us
to query for nodes by their location. The message is routed through the net-
work like any normal request. If a node with the specified location is found, a
reply is sent back to the requester. From September 2012, information about
nodes outside of the second neighborhood could only be obtained by using the
FNPRHProbeRequest. As a reply to this message, one specified information, e.g.
the location or the uptime, about a random node from the network is returned.
The node is chosen by executing an random walk with Metropolis-Hastings cor-
rection for 18 hops, so that every node should be selected close to uniformly at
random 8. Note that the message type FNPRoutedPing clearly allowed track-
ing of nodes, whereas FNPRHProbeRequest abolishes the possibility to query
for a specific node. Hence, we also show that tracking is possible with FNPRH-
ProbeRequest, a message that is still supported by the current Freenet version
(1459 ).

In both approaches, we estimated the session starts S(u) and endpoints E(u)
of a node u based on our measurements. From these sets, we characterized churn
behavior as follows: Let sj(u) and ej(u) denote the j-th smallest element in S(u)

8 https://wiki.freenetproject.org/index.php?title=FCPv2/ProbeRequest
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and E(u), respectively. The total time of the measurement was T . The length of
the j-th session of node u was then computed as sessj(u) = ej(u)− sj(u) given
that u is online for at least j sessions. Similarly, the j-th intersession length was
computed as interj(u) = sj+1(u)−ej(u). Session and intersession length provide
information on the reliability of nodes and the amount of maintenance required
to keep the structure of the network intact. The connectivity factor of a node u is

then defined as the fraction of time u was online, i.e., conn(u) =
∑|S(u)|

j=1 sessj(u)

T .
The connectivity factor is decisive for determining how often a file is available
at a node. Moreover, we analyzed the number of nodes in the network to see if
there are diurnal patterns. The fraction of online nodes for each point in time t
and set of observed nodes Q are given by f(t) =

|{u∈Q:∃j:sj(u)≤t,ej(u)≥t}|
|Q| .

Using FNPRoutedPing The methodology using FNPRoutedPing was to first
collect locations of nodes and then ping each of those locations every X time-
units. However, pings are routed within the Freenet network and are thus not
guaranteed to find a node even if it is online. We solved this problem by pinging
a node multiple times from different monitoring nodes. The maximal number
of pings per node was chosen empirically such that the probability that a node
would answer at least one of our pings was found to be sufficiently high.

We hence conducted the measurement as follows: First, we distributed our
monitoringM equally in the key space, i.e., at locations i/|M | for i = 0 . . . |M |−
1. We divided n nodes to ping in sets of size n/|M |. EveryX timeunits, each mon-
itoring node pinged n/|M | nodes and reported to a central server, which nodes
had answered the requests. Nodes that had not been found were rescheduled to
be pinged by a different monitoring node. After a node had been unsuccessfully
pinged by k monitors, it was considered to be offline. k was chosen empirical by
pinging our own monitoring and choosing k such that an online node would be
detected with probability at least p9. We obtained the session starts and ends
from the logged data as follows: The total time of our measurement was divided
into K intervals I1, . . . , IK of length X. For any node u, we determined a se-
quence of boolean values on0(u), on1(u), . . . , onK(u), onK+1(u), so that oni(u)
is true if u has been detected in interval i = 1 . . .K and oni(u) = false for
i = 0,K + 1. Then S(u) consisted of the start times of all intervals in which
u was discovered but has not been discovered in the proceeding interval, i.e.,
S(u) = {(i − 1)X : i ∈ {1, . . .K}, oni(u) = true, oni−1 = false}. Analogously,
E(u) = {iX : i ∈ {1, . . .K}, oni(u) = true, oni+1 = false}.

Using FNPRHProbeRequest The methodology using FNPRHProbeRequest
was to send a large number of requests for node locations into the network from
different locations and gather all replies together with a timestamp. A node was
considered offline if no reply from it had been received for at least time τ .

9 We are aware that the estimation is only valid under the assumption that our mon-
itoring nodes are representative for all nodes.
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More precisely, we obtained an ordered set R(u) = {r1(u), . . . , r|R(u)|(u)} with
ri(u) ∈ [0, T ] of reply dates for each user/location u. The start of a session was
assumed to be the first time a node had replied after not replying for τ timeunits,
i.e., S(u) = {ri(u) ∈ R(u) : i = 1 or ri(u) − ri−1(u) ≥ τ}. Analogously, the
end of a session was defined as the point in time of the last received reply
E(u) = {ri(u) ∈ R(u) : i = |R(u)| or ri+1(u) − ri(u) ≥ τ}. For choosing
a suitable value for τ , let req be the number of answered requests per time
unit. Assuming that indeed all nodes are selected with equal probability, the
probability that a node does not respond to any of the req · τ(p) requests is
given by

1− p = (1− 1/n)
req·τ(p) (4)

for a network of n nodes. p ∈ {0.9, 0.925, 0.95, 0.975, 0.99, 0.999} was used. A
low p indicates that the probability to accidentally cut one session into multiple
session is high, in particular for long sessions. With increasing p, the probability
to merge multiple sessions into one increases as well.

3.3 Data Set and Privacy

Our research was conducted in agreement with the German Federal Data Protec-
tion Act (in particular §28 and §40). In order to protect the privacy of Freenet’s
users, we carefully made sure to erase all identifying information from our col-
lected data after computing the necessary statistics. The collected IP addresses
were the potential link between Freenet users and their real-world identity. Note
that the IP addresses were only required for obtaining the geolocation and the
count of diverse IPs, and were deleted afterwards. We did not record the IP ad-
dress in our database for all remaining measurements, in particular the tracking
of users was done solely based on their Freenet location, which is unrelated to
the real-world identity. The recorded data is available upon request.

4 Topology Characteristics

In this Section, we present the results regarding the distance and degree distri-
bution of the Opennet. Using simulations, we then show that Freenet’s current
ID selection fails to provide the desired routing performance. Finally, we discuss
the impact that separate Darknets attached to the main Opennet topology have
on the routing quality of the overall system.

4.1 Distance and Degree Distribution

The number of hops, also called the routing length, needed to discover a file is
essential for the performance of a P2P system. It is mainly influenced by the
number of neighbors a node has and the locations of these neighbors in the key
space.
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The distance distribution between neighbors is supposed to be close to Klein-
berg’s model. However, nodes connect to those answering requests independently
of their location, so that we would rather expect the distance between neighbors
to be distributed uniformly at random. The degree distribution is directly related
to the bandwidth of the nodes, i.e., a higher degree should correspond to a high
bandwidth. The degree distribution of neighbors is expected to show nodes with
a degree above average, since they are more likely to be selected as neighbors.

Setup: The data for this analysis was obtained from a two week measurement
in May 2013 using 12 instrumented Freenet clients.

Results: Figure 1a shows the cumulative distance distribution observed in our
measurements in comparison to the function 1/d for d > 0.01. Indeed, each node
had a high number of close neighbors. However, contacts at distance exceeding
0.05 seemed to be chosen uniformly at random, as indicated by the linear increase
of the distribution function.

With regard to the degree distribution, there are several peaks in the degree
distribution around 13, 50, 75 and 100 (cf. Figure 1b). Indeed, these seem to
correspond to typical bandwidth, e.g. for 2 Mbit/s 100 neighbors are allowed.
Note that we observed nodes with a degree of up to 800, but nodes with a degree
of more than 100 make up less than 1 %. Nodes with a degree of less than 10
are likely to be in the start-up phase since by default a node is allowed at least
14 neighbors.

Discussion: We have seen that nodes have a high number of close neighbors.
These are probably found by announcements sent via the seed nodes and routed
towards a node’s own location. However, the long-range contacts are chosen
uniformly at random, i.e., with a probability proportional to 1

d0 rather than with
probability of 1

d1 . The routing cost when nodes are connected independently of
their locations is of order n2/3 [6].

4.2 Simulation study of Freenet’s routing performance

To illustrate the impact of our previous derivation, we performed a simulation
study of the Freenet routing algorithm.

Setup: We generated a ring topology with 15, 000 nodes corresponding to the
network size estimated in Section 5.1. Each node was assigned a random location
in [0, 1), corresponding to Freenet’s key space. Each node was connected to the
k closest nodes on the ring. In addition, for each node a random integer l was
chosen according to the empirical degree distribution we observed in the Freenet
network. The node was then given d = max{l−2k, 0} long-range contacts chosen
proportional to 1/dr for r = 0 (independent of the distance as in Freenet) and
r = 1 (anti-proportional to the distance suggested by Kleinberg).
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Fig. 1: Distance Distribution of neighbors, Degree Distribution, and the Degree
Distribution of neighbors
Reults: The average routing length was less than 13 hops for an optimal distance
distribution (r = 1), but 37.17 hops for r = 0, i.e., the distance distribution we
found in Freenet. When connecting each node to the 3 closest nodes on the ring,
i.e., k = 3, the average routing length for r = 0 decreased to 28 because progress
was made using the additional short-range links, but the average routing length
for r = 1 increased by 30% to 17 hops. These results show that Freenet’s per-
formance can be drastically improved by, e.g., dropping and adding connections
based on the distance of node identifiers. A Kademlia-like bucket system [24]
could be used to achieve the desired distance distribution while still allowing a
wide choice of neighbors. So, the decision of dropping a neighbor can be made
both on its performance and its location. The number of buckets of the number
of contacts per bucket and hence the degree can be chosen dependent on the
bandwidth a node contributes to the system, in order to retain this incentive of
the current neighbor selection scheme. An alternative approach can be to include
Opennet in the location swapping algorithm used by Darknet nodes, which has
been shown to achieve a Kleinberg-like distance distribution in [5] for a static
network. An in-depth simulation study is required to give concrete guidelines.

4.3 Darknet

We expected that requests forwarded into the Darknet would fail more frequently
because the Opennet node responsible for the requested key is not topologically
close to Darknet nodes with similar locations.

Setup: The measurement was conducted for a duration of 140 hours in April
2014. We manually set up a small Darknet consisting of 10 nodes and connected
two of these nodes to one monitoring node in the Opennet.

Results: In total, the monitoring node received 3, 540, 000 requests and forwarded
47.94% into the Darknetnet. While 8.46% of the requests forwarded into the
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Opennet were successful, only 0.08% of the Darknet requests returned the re-
quested resource. Overall, only 4.4% of the requests forwarded by the monitor
were successful.

Discussion: The performance decrease only considers requests forwarded via
our monitoring node, and thus the impact of one small Darknet on the overall
performance is low. However, we have seen that forwarding messages into the
Darknet can clearly decrease the success rates if Darknet and Opennet are only
connected by one link. If such Darknets exist in large numbers, they might
be partly responsible for low success rate of Freenet routing. Including Opennet
nodes into the location swapping can potentially solve the problem of parallel ID
spaces, but as stated a detailed study is needed to show if the overall performance
is actually improved.

5 User Behavior

In this Section, we present the results of our measurements in Freenet concerning
the actual network size, origin of nodes, churn behavior and file popularity.

5.1 Network Size and Origin

We expected to discover a few thousand of concurrently online nodes, as observed
in earlier measurements [4]. As the main goal of Freenet is to provide censorship-
resilience, we also expected to find users from countries where either Internet
censorship is applied or at least heavily discussed. While in the first case, services
such as Tor [25] or Freenet are needed to retrieve the desired content, the use of
anonymous and censorship-resilient communication might be increased due to a
heightened awareness of potential privacy breaches in the second case.

Setup: Our measurements were conducted for 8 weeks in June to August 2012
using 55 instrumented Freenet clients.

Results: During the eight week measurement period, we observed a total of
58, 571 unique locations. The number of distinct IP addresses was 102, 376. Most
locations were discovered during the first two weeks, afterwards only one or two
new locations were found most days. On some days, however, several tens of
new locations were discovered within one hour. The sudden increase was proba-
bly due to measurement activities by other institutions. Excluding these bursts,
we see a convergence in the number of discovered locations, indicating that we
were aware of most active Freenet clients. The observed difference between the
number of locations and IPs is explained by the frequent use of non-static IPs.
While the increase in discovered IPs is largest in the first days, the numbers
grow constantly throughout the measurement, as can be expected if active users
regularly change their IP. In addition, nodes can advertise more than one IP
address at a time. Whereas the majority of nodes (84.4%) had only a single IP
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Fig. 2: Distribution of Freenet nodes
over countries

p τ(p) θ(qi(p)): mean,min,max
0.900 3:27 0.993,0.989,0.996
0.925 3:53 0.993,0.989,0.996
0.950 4:29 0.992,0.989,0.995
0.975 5:31 0.991,0.987,0.994
0.990 6:54 0.989,0.983,0.993
0.999 10:22 0.984,0.979,0.989

Fig. 3: FNProbeRequest Statistics:
Time τ(p) without reply until a node
is declared offline, and the estimation
qi(p) of detecting an online node

address over the whole period, about 10% advertised 2 and 3.6% 3 different IPs.
On a closer look, nodes with more than 10 IP addresses were commonly located
at universities, but also at the Tor proxy network TKTOR-NET, indicating that
some users aim to hide their IP address in the Opennet by using Tor. At the time
of the measurement, TKTOR-NET provided three exit nodes that participated
in Freenet. IPs from various anonymous VPN were discovered as well. The dis-
covered nodes were mainly traced back to Europe and North America, as can be
seen in Figure 2. Nearly a quarter of the discovered installations were located in
the USA, an eighth in Germany. Together with France and Great Britain, these
countries made up more than half of all encountered nodes.

Discussion: Our results show that Freenet is widely used. We discovered close
to 60,000 active Freenet installations. So there clearly is demand for privacy-
preserving communication and publication. Nevertheless, the typical Opennet
user does not seem to be located in countries typically associated with Internet
censorship. However, our study does not shed light on Darknet and Tor users.

5.2 Churn

In this Section, we discuss and compare the results for the two methods to
measure churn behavior in Freenet introduced in Section 3.2. In all measurement
studies of file-sharing systems, very short medium session length of less than 1
hour were observed. We expected to see such short sessions as well, corresponding
to down- or uploads of one specific data item, especially if the content is sensitive
and online times are short to minimize the risk of capture. However, Freenet users
are advised to leave their clients running for at least 24 hours, so that we expected
a comparable high fraction of long session as well. For both measurements, we
first state the set-up and the results, but leave the discussion until the end of this
subsection. In addition, we shortly discuss both the accuracy of our measurement
as well as the additional load on the network created by the measurement.

Setup: The first measurement study was used to analyze the long-term behavior
of a large set of nodes over more than a month, identifying daily and weekly pat-
terns. The second measurement was needed because nodes were not contacted
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Fig. 4: Churn characteristics using FNPRoutedPing for node discovery

frequently enough to provide an accurate description of the session length distri-
bution. The differences in the methodology were due to a change in the Freenet
code between the first and the second measurement, which abolished the FN-
PRoutedPing message used for locating specific nodes.

Using FNPRoutedPing We performed the measurements querying every node
at most k = 5 times. In order to observe the long-term behavior of nodes, the
measurement period was chosen to be X = 1h. The value of k was chosen,
such that our own nodes replied with a probability of 99.9%. The measurements
were executed over a period of 28 days in August and September 2012 using 55
instrumented Freenet clients.

Results: The session length distribution is shown in Figure 4a, using bins of
1 hours in agreement with our measurement period. The majority of session
lasted less than two hours, only 1.7% of the sessions lasted longer than 100
hours. The longest observed session was 357 hours. Note that there was a drop
in the session length at about 8 and 17 hours, most probably because some nodes
are only online during certain parts of the day.

The inter-session time follows a similar distribution: Roughly 10% of the
inter-sessions are between 1 and 2 hours. Potential reasons are the missed prob-
ing due to the probabilistic nature of the measurements, crashes, and short-time
connectivity breaks, e.g., when moving a laptop from home to work. Further-
more, there is a peak at the about 8 hours, in agreement with the corresponding
peak of session length of roughly 16-17 hours. The results indicate that some
users only run their clients during the day. The average connectivity factor of
all nodes was rather high, namely 0.19.

The average number of discovered nodes was 3, 207 of the 15, 503 pinged
nodes. The number of discovered nodes over time can be seen in Figure 4b.
Diurnal patterns can be clearly identified. There was a maximum in the number
of users at 10 PM CEST and a minimum at 10 AM CEST. In general, the
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number of online nodes in our sample varied between 2, 500 and 3, 600. So the
network size changed periodically, but not drastically.

Accuracy and Load: The session length is only estimated within an accuracy
of 2X = 2 hours, hence we only considered the long term behavior in this
measurement. Note that the results represent a lower bound on the fraction of
long session because nodes can be accidentally declared offline during a session.
As for the measurement cost, we found that without an measurement, a Freenet
node forwarded on average around 13, 000 file requests and replies per hour, not
considering maintenance costs. The average maintenance traffic produced by our
measurement was less than 500 messages per node per hour.

Using FNPProbeRequest The measurement was conducted in November
2013 over a period of 9 days using 150 instrumented clients. We varied p, the
lower bound on the probability that an online node replies within a time τ(p),
between 0.9, 0.925, 0.95, 0.975, 0.99, and 0.999 as described in Section 3.2. Our
monitoring nodes received at least req = 10, 000 replies per minute. Choosing
τ(p) according to Eq. 4 with an estimate of n = 15, 000 resulted in intervals of
roughly 3 (p = 0.9) to 10 (p = 0.99) minutes as can be seen in Table 3. Note
that p is a lower bound on the probability to discover a node since we consider
a lower bound on req and an upper bound on n.

Results: The median session length of the second measurement was between 49
to 110 minutes, depending on p. In particular, the median session lengths for
p = 0.975 and p = 0.99 were 95 and 99 minutes, respectively. The distribution
of the session length is shown in Figure 5a. We fitted the distribution to the
most commonly used models for the session length (e.g., [21]), in order to see if
they provide adequate accuracy to be used as models of Freenet user behavior
in simulations. The non-linear least square fit function in R10 was used to fit
the distribution for p = 0.99: an exponential distribution with cdf 1− exp(−ax)
for a = 4.086 · 10−3, a shifted Pareto distribution 1− (1 + x/b)−a for a = 1.054
and b = 116.3, a Weibull distribution 1− exp(−(b ∗ x)a) for a = 0.4788 and b =
5.355·10−3, and a lognormal distribution Φ((log(x)−a)/b) for a = 4.5773610 and
b = 1.8235325 with Φ denoting the cumulative normal distribution. The residual
errors were minimized for the Weibull distribution (about 8 · 10−3). However,
the lognormal distribution also achieved an residual error of only 0.019. The
error of the lognormal distribution is mostly due to its underestimation of the
fraction of short sessions, as can be seen from Figure 5b. Since the session length
was underestimated by our measurement methodology in general, the error is
acceptable and can be seen as a correction. The fittedWeibull distribution, on the
other hand, overestimated the fraction of short sessions, while the exponential
and Pareto distribution did not model the shape of the distribution accurately.

The distribution of the inter-session length is displayed in Figure 5c. The
median inter-session length varied greatly between less than 10 minutes (p = 0.9)
10 http://stat.ethz.ch/R-manual/R-patched/library/stats/html/nls.html
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Fig. 5: Session length for a) all considered p, and b) p = 0.99 fitted to common
session length models, c) inter-session length, and d) connectivity factor

and close to 6 hours (p = 0.999). All distributions show a strong increase in the
distribution function of the inter-session length at roughly 8 to 10 hours as well
as at roughly 16 to 17, indicating that a lot of users only run their clients during
certain hours of the day. Due to these spikes, the inter-session length could not
be fit to any of the standard models. The distribution of the connectivity factor,
displayed in Figure 5d, shows that most users were online during a small fraction
of the measurement, but also more than 5% of the users have a connectivity
factor of nearly 1. Note that in contrast to the session length, the results for the
connectivity factor are very close for all p, due to the fact that the overall online
time is not largely influenced by splitting one session into multiple sessions. The
average connectivity factor is around 0.22.

Accuracy and Load: We show that indeed our method selected nodes uniformly
at random, and captured more than 98% of all online nodes. As stated in Section
3, assuming that the htl counter is set high enough, all nodes should reply with
roughly equal probability. In particular, the number of requests answered by our
monitoring nodes should be approximately normal distributed. We performed
a Kolmogorov-Smirnoff test, which indicates a normal distribution (p-value of
roughly 0.06). So nodes seem to be selected uniformly at random, which allowed



17

us to obtain a lower bound on the probability of detecting an online node as
follows. The size of a static network can be estimated by performing two sam-
ples and considering the size of their intersection [26]. Note that in a dynamic
network only a lower bound is obtained since the population changes in consec-
utive intervals and the intersection consists of at most all nodes online in both
intervals. We split the measurement period into intervals of length τ(p), and de-
termined the sample Ai of all nodes responding to a probe in interval i. We then
computed the fraction of the intersection fi =

|Ai∩Ai+1|
|Ai∪Ai+1| . For the probability qi

to sample a node during interval i. The probability that a node is sampled in
interval i and i + 1 is qiqi+1, and the probability that it is sampled in at least
one interval is 1− (1− qi)(1− qiqi+1). For a static network and constant qi, the
expected value of fi would be E(fi) = q2i

1−(1−qi)2 . We hence obtained an unbiased

estimate θ(qi) = 2fi
1+fi

by transforming fi =
q2i

1−(1−qi)2 . The values computed
for mean,minimal, and maximum θ(qi) over all intervals exceed 0.98 (but for
the minimum in case of p = 0.999 as displayed in Table 3), so that indeed we
captured the majority of online nodes per interval. For long intervals τ(p), the
estimate on the accuracy decreases below p since the changes in the population
outweighed the improved accuracy of an increased number of probes. However,
the probability to be detected in every interval decreases exponentially with the
session length and the reciprocal of interval length τ(p). For a probability of 0.98
to detect a node, the chance to be accidentally declared offline during 1 hour
(more than 15 times τ(p)) is still close to 30 % for p = 0.9 and p = 0.95, explain-
ing the short median session length for low values of p and the high number of
short intersessions of less than 10 minutes. Hence, the higher values

The overhead produced by FNPRoutedPing is about 2000messages per hour,
which makes up a noticeable but not large fraction of the roughly 13, 000 requests
and replies that need to be processed normally.

Discussion: We conducted two measurements. The first one was a long-term
measurement over more than 4 weeks, in order to find diurnal and weekly pat-
tern. We found that the fraction of long sessions was considerably higher in
Freenet than in BitTorrent. Pouwelse [19] found that at most 3.8% of BitTor-
rent users stay longer than 10 hours and only 0.34% longer than 100 hours. In
comparison, we observed close to 2% of sessions lasting longer than 100 hours.
We clearly observed diurnal patterns, though they are not as distinct as in other
applications, such as in Facebook [27]. The second measurement study was con-
ducted to obtain more fine-grained results on the session and inter-session length,
in order to evaluate the applicability of common churn models used in simulators.
We discovered that the session length is reasonably well modeled by lognormal
or Pareto distributions, but not by a Weibull or exponential distribution. In
contrast, Stutzbach’s results from 2006 indicate that churn in structured P2P
systems is well modeled by lognormal and Weibull distributions [21]. The median
session length was 4 hours in the first measurement, but less than 2 hours in
the second measurement. Potential reasons are the high inaccuracy of the first
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measurement. For example, a session length of slightly more than 2 hours can
accidentally be declared as 3 hours. Furthermore, nodes are only pinged every
hour, so that short inter-sessions can be missed. However, both measurements
indicate a longer median session length than the 1 to 60 minutes observed in
Napster [15], Gnutella [15], FastTrack [16], Overnet [17], Bittorrent [19], and
KAD [20,21]. The inter-session length could not be modeled by commonly used
distributions such as Pareto, because both measurements exhibited local max-
ima at about 8 and 16 hours. Such behavior has not been remarked in the related
work, to the best of our knowledge. In summary, our results indicate that Freenet
users are online longer than users of common file-sharing applications. Further-
more, clear diurnal patterns can be observed by considering the number of online
nodes and the inter-session length.

An ulterior result of the churn analysis is that the online time of nodes can
be reliably tracked, even without the possibility to ping a specific node. In this
measurement, we only tracked the nodes by their location. However, locations
of Opennet nodes can be mapped to IP addresses by inserting monitoring nodes
in the system and tracking the location and IP of neighbors as presented in Sec-
tion 5.1. The knowledge of online time now enables intersection attacks on the
anonymity [28]. As a consequence, the seemingly harmless FNPProbeRequest,
which returns information of a random node in the network, can potentially be
abused for harming the anonymity. Because the focus of our study was the effi-
ciency rather than the security of the system, we did not perform a detailed study
on the potential damage. However, the reliability in tracking our own nodes in-
dicates that FNPProbeRequest should be removed from the set of Freenet’s func-
tionalities. It mainly seems to be used by Freenet developers to obtain statistics
about the network, but as seen above, the data is poorly anonymized and can
be potentially abused.

5.3 File Popularity, User Activity, and Content

The popularity of files in file-sharing systems is assumed to be Zipf-distributed,
i.e., the majority of requests address a small number of files. In contrast to P2P-
based content distribution systems, Freenet provides the storage and retrieval
of Freesites and blogs, which are clearly different from regular popular media.
Hence, it is unclear if the aforementioned properties also hold for Freenet.

Setup: The measurement was conducted in Autumn 2012 using 11 instrumented
Freenet clients. Their locations were chosen uniformly at random.

Results: During the measurement, we logged several hundred thousands of file
requests. The 1,000 most popular files all received more than 21,000 requests,
indicating that the majority of regular Freenet users requested those files. Our re-
sults indicate a Zipf-distribution for file popularity in agreement with the results
on BitTorrent [20,29]. The most popular file accounts for 0.73% of seen requests,
the second most popular file only for 0.45%. The 30-th popular file only accounts
for 0.25% of the requests. Hence, after the fast decrease in popularity for the
first files, the decrease is then slower and steadier.
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Discussion: Our analysis of file popularity and user activity mostly agrees with
the common assumptions. There are few very popular files, and the majority
of the files is not requested frequently. Similarly, most files are published by a
small set of users. We did not fit the popularity distribution, since local caching
of popular files is bound to reduce the number of actually observed requests for
popular files in comparison to less popular files. Consequently, our measurements
underestimate the popularity of popular files, and the actual numbers are not
reliable. However, the existence of a Zipf-like distribution can be assumed from
the results, even if the actual shape of the distribution is skewed. Hence, the
Least-Recently-Seen caching used in Freenet and designed for such popularity
distributions should be very effective.

6 Conclusion

We showed how to conduct measurements in Freenet despite its obfuscation pro-
tocols. The results verify that the routing in Freenet is insufficient with regard
to the neighbor selection and the interaction between Opennet and Darknet.
Furthermore, we obtained a realistic churn model of Freenet users. In the fu-
ture, we aim to evaluate our proposed neighbor selection and routing algorithms
in a trace-driven simulation model based on the user behavior measurements
and integrate them into the Freenet client code.
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