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Abstract

Agents insmall worldnetworks are separated from others by short chains of edges,
and they also have the ability to find these paths. Kleinberg (2000) relates a decen-
tralized ability, finding short paths using greedy routing between nodes in a lattice,
to a unique distribution on shortcut edges. Sandberg (2005) presents a method that
can take a graph from this class without position information and assign positions
to make it navigable again. The method is a Markov Chain Monte-Carlo method
using the Metropolis-Hastings algorithm where nodes switch positions in a base
lattice.

In this thesis we study ways to speed up the method by Sandberg to make
graphs from the Kleinberg model navigable. First, we study how to compare dif-
ferent switching methods. Second, we study different ways to propose which po-
sitions to switch. Third, we attempt to increase the number of nodes involved in a
switch. The new selection kernels are also fit for distributed implementation like
in Sandbergs work.

The main results are three new selection kernels, each involving two switching
nodes, that improve the time for the algorithm to reach good performance. Involv-
ing more nodes in switches also seems to give certain improvement, but switching
two nodes with a bias seems more efficient than including an additional node uni-
formly at random.
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1 Introduction and previous work

Thesmall worldconcept dates back over several decades, but the mathematical models
done continue to find new applications today. In essence a small world network is
one where any two persons are connected to each other through short chains of edges,
and graphs of such networks have a small diameter. This thesis is concerned with one
method of applying such models to networks without explicit position information, in
order to make them more efficient for routing.

A short summary of some background and models attempting to explain small
world phenomena are covered here, before we take off from the work by Sandberg [9].
To present the background to this thesis we will only do this in a concise manner, more
detailed summaries of the small world ideas can be found in [1],[11],[9]. In section 1.6
we discuss the goals of this thesis.

1.1 Milgrams work and “six degrees”

The work by Milgram [8] in the area of social psychology was a breakthrough in quan-
tifying the small-world property of networks: the findings that have also been mythi-
cally called “six degrees of separation”. The experiments carried out in North America
explored how closely any two persons were connected to each other through the social
network of friendships. The way to measure this was to count the number of steps a
message would need to take from a random source, through a chain of friends, to a
destination. One typical experiment would go like this. A person was selected as the
destination of a message (e.g. a letter). Then a large number of people were selected
geographically far away1 and were given the task of passing on the message to the
destination. The message could only be passed on between friends, and not directly to
the destination, so that the messages had to pass through chains of friends. The results
of the experiments showed that often the number of steps needed is surprisingly small.
Some interpretations claim the average number was six, but the exact number has been
under debate (see e.g. Kleinfeld [7]).

An idea slightly different from that people are on average closely connected as
shown in Milgrams empirical work, is that people seemingly were able to construct
short paths from what seemed to belocal information. When people (oragentsin a
network) are able to do this efficiently, we call the networknavigable. Local informa-
tion means that messages were only passed on between friends and that people were
usually not able to foresee the exact path that a message would take further on. With
full knowledge of the graph structure (ie. knowing the full network of social friend-
ships), one may expect that it’s possible to construct a short path to a target. But when
restricting the decision of an agent to only use local data, the ability to paths through
the network is more surprising. The strategy mostly used to pass on the message was
to send it on to the friend that seemed closest to the destination, a distance measure that
may vary in social networks (and which does not necessarily have to be geographical
distance). This implies that some variant ofgreedy routing(always passing on a mes-
sage to the neighbor closest to the destination) may be used as a method to find short
paths in social networks. This is the basis for the decentralized view that is taken for
navigation and search in small worlds. Nodes making decisions with only local data is
the scenario that we consider in this report.

1The measure of distance in social networks can be expected to be much more complicated than geo-
graphical distance
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1.2 Random graphs

One model that shows that short pathscanexist in large networks is from the theory of
random graphs. The model is often denoted asG(n, p). Such graphs start out with a set
of n nodes, and for each pair of nodes we connect them with an edge with probability
p (p is constant for a given graph). Thusp = 0 is an edgeless graph, andp = 1
is a fully connected graph. The interesting things happen whenp varies in between.
Phenomena such as the formation of large connected components, specific structures
and short paths have been studied and shown to occur typically at threshold values (in
the limit case). However, social networks are not believed to grow in this fashion. Later
and recent models have focused on explaining the growth of small worlds with respect
to the coordinates of abase lattice, lattice models where edges are added with some
relation to the distance they cover between nodes in the lattice.

1.3 Watts-Strogatz model

The model of Watts and Strogatz (1998) [10] may be in some sense closer to how real
small worlds seem to be arranged. It is based on that people usually are more likely
to have friends nearby, but that most still have some friends that live far away. Even
if the previous models had the property of typical short path between any two nodes,
some properties were missing in the random graph approach that were present in the
Watts-Strogatz model. One example is that social networks often have highclustering;
here we mean that any two nodes connected to a given node are much more likely to
know each other thanany two nodes in the graph. The new model demonstrated also
this property along to the short paths, by growing the edges based on a distance.

Generating a Watts-Strogatz graph means to start out with a base lattice (discrete,
and with periodic boundary conditions). Each node starts with an assigned position in
the lattice, then a fixed number of edges are added to each node in two steps. In the
first step edges are added between each node and its nearest neighbors with respect to
the lattice (within a small distance in the lattice), thus the clustering can be shown to
be high (since neighborhoods “overlap”). The second step consists of rewiring some
of the edges added in the first step.

The parameter,α, denotes the fraction of edges that are subject to random rewiring
from the ordered lattice resulting from the first step. In this model the rewired edges get
new targets within the lattice by uniform random assignment, thus creatingshortcuts
that cover large distances in the underlying lattice. Using the shortcuts it becomes
possible to reach parts of the graph that are far away in the lattice in a small number of
steps. Later models take a different approach to the uniform selection of the rewiring
target.

By varying α, it became possible to study the transition from a very locally or-
dered/clustered graph (α = 0) into a graph with all edges are randomly rewired (α =
1). It was found out that when one introduces just a small fraction of random rewiring,
the average shortest path length and network diameter drops rapidly, still keeping the
clustering high. See [1] for more details and simulations. These two properties are
commonly associated with small-world networks. But this model did not explainhow
the short paths could be used.

2



1.4 Kleinberg model

Kleinberg (2000) [6] generalised the model by Watts and Strogatz and at the same time
approached a different question regarding the small-world phenomenon: aside from
theexistenceof short average paths - in which situations can nodesfind and construct
short paths given only local information in each step? Kleinbergs model starts from
a base graph with local connections to the nearest-neighbors. Then each node gets an
additional shortcut by a specific random process (discussed below). For navigation
purposes, the local information for each node was restricted to the node’s own position
(in the lattice), the positions of neighbors, and the position of the destination for a mes-
sage. What kind of structure would be needed for nodes to route efficiently? Kleinberg
first showed that the Watts-Strogatz model did not allow for efficient greedy routing,
but related an ability to do this to a specific distribution on shortcut lengths taken with
respect to the lattice (a requirement on the random process for adding the shortcuts).

The family of models discussed in Kleinbergs work were the following: given a
distance measured(x, y) beween each pair of nodesx andy in ak-dimensional lattice,
the probability for a shortcut edge to exist between two nodes is proportional to the
distance covered by it depending on a parameterα. The probability of a long-range
shortcut fromx to y, would then be proportional tod(x, y)−α.

Kleinberg showed that there is a unique distribution within this family that allows
for efficient greedy routing (in each step, a node forwards a message to the neighbor
closest to the target with respect to distance in the lattice), and it is forα = k wherek
is the dimension of the lattice. The probability for a shortcut edge fromx takingy as
target needs to be

p(x ↔ y) =
d(x, y)−k

Hk(n)
(1)

whereHk(n) is a normalization constant.
Forα = 0, this would correspond to selecting uniform random selection of shortcut

targets, roughly like the Watts-Strogatz model (but this model adds shortcuts instead
of rewiring existing connections). Whenα increases, it becomes more probable for
a shortcut edge to cover shorter distance (take targets closer to the source node, with
respect to distance in the lattice).k is the critical value ofα where we have a distri-
bution balancing the proportion of shortcut distances that is needed for greedy routing.
A graph where shortcuts have been generated by applying this specific distribution is
shown to allow for greedy routing with on averageO(log2(n)).

1.5 Sandberg: Distributed Routing in a Small World

Sandberg (2005) [9] presents a method to take a graph where the shortcut edges have
been generated as in the Kleinberg model, but that comes without position information
(no lattice), and make it navigable. The method assigns positions to the nodes in a new
base lattice in order to make it navigable. This is done by trying to match the Kleinberg
distribution given in Equation 1 for the assigned positions, so that the distance covered
by the edges reflect this. The way to make such a topology navigable again is to make
an estimation for the configuration of positions that is good enough to allow for efficient
greedy routing.

To make an estimation, the Kleinberg model is seen as the process to generate
a set of shortcut edges, and the graph that we get is an instance. The algorithm is
from the field of Markov Chain Monte-Carlo and is on a form so that it allows for a
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decentralized and distributed implementation in a graph. Thus it may be used to create
navigable overlay networks in a distributed way in this kind of topology.

By considering all possible configurations of positions for nodes in this graph, a
Markov chain is constructed on the set of all possible configurations. This corresponds
to all the possible ways to assignN different numerical positions toN nodes, so the
state space of the chain is of sizeN !. Oneconfigurationis defined as a functionφ from
the set of nodesV to the integer position assigned to each node in ak-dimensional
base lattice. Running the resulting Markov chain for a number of steps improves the
efficiency of greedy routing for graphs with shortcut edges from the ideal Kleinberg
distribution from Equation 1, partially also for a more general class of (random) graphs.
The methods seems to fit well for applications in anonymous networks, and more gen-
erally in overlay networks, in situations where the only contacts are between peers that
trust each other [2]. Approaching the Kleinberg model is done through a sequence of
position switcheswhich define the transition matrix of the Markov chain. This is also
known as theselection kernelin the Metropolis-Hastings algorithm, which we will be
concerned with in much of this work. The rest of this section briefly describes the
derivations of the distributed algorithm in [9].

1.5.1 Probability model

Assume that we get a graph(V, E) with nodesV and edgesE, and that the config-
urationφ has assigned positions to each node ofV in a k-dimensional lattice. If the
edges have been generated by the Kleinberg model then the probability of the particu-
lar set of edgesE depends on how much distance the edges cover in the configuration.
Adding of edges occur independently in the Kleinberg model, so we get the conditional
distribution

P (E|φ) =
m∏

i=1

1
d(φ(xi), φ(yi))kHG

(2)

whered(φ(xi), φ(yi)) is the distance covered by edgei in the lattice, andHG

is a normalizing constant depending on all possible assignment ofm edges with this
configuration.

In our problem the initialφ used when applying the Kleinberg distribution is what
we have no previous information on, and which we need a good estimate for. The task
is to estimate the configurationφ in order to generate an embeddingφ̂ of the nodesV
into ak-dimensional lattice, so that the distribution of distances will fit the Kleinberg
model. The approach is taken as follows.

1.5.2 Bayesian approach

Instead of trying to directly compute a configuration that maximizes Equation 2, which
has been shown to be NP-complete [3], Sandberg takes a Bayesian approach. In a case
where we only get the vertices and edges of a graph, known to have been generated
using the Kleinberg distribution in a base lattice, we can view the adding of edges as
an experiment and the edgesE as the outcome. This leads us to consider a distribution
on all the possible configurations, instead of trying to recover the most likely config-
uration. This becomes the parameter of the model and is given as thea posteriori
distribution on the configuration
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P (φ|E) =
P (E|φ)P (φ)

P (E)
(3)

The idea is to draw a sample from this distribution, and then assign it to the nodes
V . This distribution will give a bias for configurations that cover shorter lengths with
respect to the base lattice. The approach to sample the posterior distribution is done as
follows.

1.5.3 Metropolis-Hastings

Metropolis-Hastings is a method in the field of Markov Chain Monte-Carlo [4]. When
one wants to draw samples from a distribution one usual approach is to integrate over
the distribution function. When this is complicated and the size of the problem is
large, the Metropolis-Hastings method can be seen as one way to approximately sample
from the distribution. The idea of the method is to construct a Markov chain with the
distribution that one wants to sample from as astationary distributionfor the chain.
If the chain is made irreducible and aperiodic (ergodic) then the chain will converge
towards the stationary distribution from any starting state (or distribution). In the limit
case this holds exactly, in practice and finite times the number of iterations needed
depends on the requirements of the problem (see e.g [4], [5] for good presentations).

The Metropolis-Hastings algorithm works with two components,α andβ, that are
used control the transition between states of the Markov chain. One result from this
that fits well with simulating the chain is that there is no need to explicitly generate
the whole transition matrix. Theselection kernelα(Xi, ·) is a distribution on the states
that may be selected next from any stateXi, and this distribution is designed with some
freedom depending on the application. In each step of the chain, a proposed stateXi+1

is drawn depending on a current stateXi with probabilityα(Xi, Xi+1), and accepted
with probabilityβ(Xi, Xi+1) given by

β(Xi, Xi+1) = min

(
1,

π(Xi+1)α(Xi+1, Xi)
π(Xi)α(Xi, Xi+1)

)
(4)

whereπ is the stationary distribution that we want the chain to converge to. If the step
is not accepted then the chain stays in the current state.

The trick of the algorithm is that the use ofα andβ make the chainreversible; that
is,∀j, k : π(Xj)Pj,k = π(Xk)Pk,j whereP is the transition matrix for the chain. This
is also the property that givesπ as the stationary distribution (for details, see Appendix
A). The general form of the Metropolis-Hastings is now presented: in each stepi do

1. Propose a new stateXi+1 for the chain followingα(Xi, Xi+1).

2. Accept the new state withβ(Xi, Xi+1)

1.5.4 Metropolis-Hastings on the set of configurations

Now what is left is to create a Markov chain with stationary distribution given by
Equation 3, that is, the probability of a given configuration of positions being used
to generate the observed set of edges. Each statei is thus a configurationφi. In [9]
α(φs, φr) = α(φr, φs) by symmetric proposals. Evaluatingβ(φs, φr) is done as fol-
lows
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β(φs, φr) = min

(
1,

P (φr|E)α(φr, φs)
P (φs|E)α(φs, φr)

)

= min

(
1,

P (E|φr)
P (E|φs)

)

= min

(
1,

m∏

i=1

d(φs(xi), φs(yi))k

d(φr(xi), φr(yi))k

)
(5)

where we have used the symmetric selection kernels and uniform a priori assump-
tions for cancellation. The expression holds forβ given any symmetric selection kernel.
What does a good symmetric selection kernel look like? The approach taken is to let
α(φs, φr) denote a position switch between two nodes, drawn uniformly random from
the graph. This will define each step of the Markov chain.

What differs betweenφs andφr is thus only the positions of two nodes involved
in a switch. A stateφr is thex, y-switch ofφs if φs(x) = φr(y) andφs(y) = φr(x),
and∀z 6=x,y.φs(z) = φr(z). As a consequence of this, the only thing that differs is the
lengths covered by the edges connected to the two nodes involved in the switch. Now
this is used to simplify Equation 5 to

β(φs, φr) = min


1,

∏

i∈E(x∨y)

d(φs(xi), φs(yi))k

d(φr(xi), φr(yi))k


 (6)

whereE(x ∨ y) is the set of edges connected tox or y. Evaluatingβ can thus be
done by only using information that is local to the both nodesx andy involved in the
switch. This gives rise to a distributed implementation, if two nodes can be selected
approximately uniformly at random. This gives a selection kernel equal to

α(φs, φr) =
{

2/(n(n− 1)) if φr is x, y-switch ofφs

0 otherwise

The Markov chain is thus defined by Equations 6 and 7 as

Pφs, φr = α(φs, φr)β(φs, φr)

for all statesφs, φr that are anx, y-switch of each other.

1.5.5 Summary

In summary the Metropolis-Hastings algorithm for trying to embed the nodes of a graph
with no position information to fit a Kleinberg distribution is done as follows. Initialize
the chain (initial state) with any random configurationφ0. In each stepi do

1. Propose a new state for the chainφi+1 following α(φi, φi+1)

2. Acceptφi+1 as new state with probabilityβ(φi, φi+1), otherwise stay inφi

This method is demonstrated to work well on graphs generated as theideal Klein-
berg model(where all edges are added with the Kleinberg distribution) without no a
priori assigned positions. It is also studied for graphs with only the shortcut edges.
That is, no edges to nodes closest in the lattice as in the Watts-Strogatz model. Being
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able to pass on messages toanynode that is closest with respect to the lattice distance
is typically lacking in overlay networks, and this also takes away the possibility for a
greedy route to always strictly approach the target in the base lattice - anddead ends
(where a node has no neighbor closer to the target than itself) have to be considered.
This removes one piece of Kleinbergs proof but can be handled in practice by back-
tracking or taking on a different routing strategy. One easy approach is to continue a
route to the best neighbor possible.

The results are shown to make also these graphs (with only shortcuts) efficiently
navigable, and here we will partially simulate them in section 2. It is also interesting to
see that the algorithms also makes some improvements on the navigability of random
graphs.

We can see that the expression for Equation 5 will prefer configurations where the
edgesE span less distance in the base lattice, and thus the algorithm can also be seen
as a minimization procedure. In terms of theSimulated Annealingframework, we can
see that theenergy functionto minimize would be the log sum of edge distances (and
T = 1 for the inverse temperature).

1.6 Goal and results of this thesis

The work in this thesis starts off from the work by Sandberg described in section 1.5,
and the goal of this work is to speed up the algorithm by modifications to the selection
methods (where the freedom lies in the selection kernel of the Metropolis-Hastings al-
gorithm). We will use the model where a graph only comes with the shortcut edges and
no “local” connections in the lattice, to focus on the case of making overlays navigable.

The rest of this work is arranged as follows

1. In section 2 we study the performance of the Metropolis-Hastings algorithm dis-
cussed in section 1.5 and conclude that there can be room for improvement. We
also describe how we typically measure routing performance.

2. In section 3 we state and simulate two stop criteria to be used for comparing the
efficiency of different selection methods further on. The first criteria relates to
how fast the method improves the actual solution, the second criteria can be used
when we know the ideal performance.

3. In section 4 we propose three different selection methods for improving the speed
of which the algorithm has effect, we call this approachlocal selectionsince they
relate to the positions that graph neighbors take in the lattice. This is done by
still considering two nodes in each switch, but trying to let nodes choose smarter
where to end up on the lattice.

4. In section 5 we try a different approach: not selecting switching peers with a
goal, but instead by including more peers (more configurations available in each
step) for the switch in each step of the Markov chain. We then try to compare
the methods against each other.

The main result is that that our three local selection methods reach the performance
at the stop criteria faster than selecting nodes uniformly random does. Involving more
nodes also indicates that there is some improvement in doing this if one considers steps
of the chain, but that a directed switch gives more improvement than only increasing
the number of nodes involved.
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2 Measuring performance and the current algorithm

In this section we discuss how we will measure navigability properties of a graph later
on, and we discuss the current performance of the Metropolis-Hastings approach (by
uniformly selecting two nodes for switching). We also make some numerical experi-
ments to show the effect of the algorithm.

2.1 Measuring performance

For a network of sizeN , we start with the nodes placed out in a1-dimensional lattice,
and to each node we add3log2N shortcut edges according to the ideal Kleinberg model
(Equation 1). The degree is somewhat arbitrary to the extent that it is high enough to
keep the number of dead ends low so that we can see the effect of greedy routing, but
also chosen for comparison purposes because it was used in [9].

When a graph has been generated, we first measure the routing performance. Then
the positions assigned to the nodes get randomly shuffled as a means to forget the initial
configuration (this is the same as to start from a random state of the chain). Now we
can measure how well we canrecover the positions used to generate the Kleinberg
model by repeating the experiments after the algorithm has been run for a number
of steps. Each greedy route is made between two nodes selected uniformly random
from the graph, and is given maximallylog2

2N steps to succeed reaching the target,
before terminating it and counting it as unsuccessful. Performance is evaluated over
105 different routes. We handle dead ends in greedy routing by continuing with the
best possibleneighbor, instead of stopping, if the current node has no neighbor closer
to the target than itself. Three factors are in focus of our performance measurements:
average length(number of steps required for successful route) in greedy routes,success
rateand theenergy function(as defined in section 1.5.5).

2.2 Metropolis-Hastings performance

We created graphs of different sizes as described above and evaluate the Metropolis-
Hastings algorithm as in section 1.5 by periodically evaluating the performance. The
period is defined inrounds, where one round isN steps (proposed position switches)
of the chain. One round then corresponds to on average one initiated switch per node
in the graph. For this experiment we evaluated with the period of 50 rounds.

2.3 Results and evaluation

We can see the results in figures 1-4. As the network size grows we can expect perfor-
mance on the initial (shuffled) positions to become only worse. The improvement also
seems to have largest effect in the initial100N steps of the chain or so. After this initial
phase theacceptance rate(switches that get accepted by Equation 6) quickly falls to a
low level when seen on longer time-scales and the improvement goes slowly.

But while the routing properties only improve slowly we can see there is also room
for further minimizing the energy function, also happening with a slow rate in com-
parison. This could imply that the algorithm often is stuck in local minima. The low
acceptance rate implies that it takes a long time to propose (or find) states that minimize
the distances covered by the edges. One way to make the algorithm gain performance
faster may be either to make better switches from the beginning, or to find the switches
more efficiently (increase acceptance rate). There may be room for improvement.
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Figure 1: Recovering the small world from randomly shuffled positions. 1000 rounds.
Averaged over 10 rounds.
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Figure 2: Recovering the small world from randomly shuffled positions. 1000 rounds.
Averaged over 10 rounds.
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Figure 3: Effect on the energy function (log sum of edge distances). Averaged over 10
rounds.
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3 Convergence rate of Metropolis-Hastings switching

The results discussed in section 2.3 may indicate that it is possible to improve the al-
gorithm by changing the way to find switches. Before we can go on and try improving
performance, we will need to decide for a method to compare the efficiency between
different switching strategies. In this section we discuss the role of the selection kernel,
short-term vs long-term results of applying the Metropolis-Hastings algorithm (with
different selection methods), and propose two different criteria for comparing the per-
formance of selection methods. This is in contrast to just studying time evolution of
the performance as in section 2, because we do not know where to stop if we just study
what has happened after a certain number of steps. The algorithm can run forever,
but when should we evaluate it? What we want to have is a way to know when we
have achieved a goal with the algorithm and stop, to see how well other methods work
against the same goal. The first stop criteria depends on the rate that the algorithm has
of improvement (on a given graph), the second depends on getting close enough to the
performance in the ideal model.

3.1 Role of the proposal distribution

Since the only factors that change the navigability properties of the graph are the po-
sition switches (proposed chain transitionsthat get accepted), the time of increase in
efficiency may depend on the time spent (number of iterations) finding these. The way
to control the mixing rate in Metropolis-Hastings is to modify the proposal distribu-
tion. As previously stated this is the property of the selection kernel that assigns, to
each state, a distribution on the set of states that may be proposed next from that state.
More generally, this represents which states are counted as neighbors to each other in
the state graph of the Markov chain. As being shown in Appendix A, we are free to
design this relationship within bounds that allow for a lot of freedom.

If the selection kernel can be designed so that it proposes states with a larger proba-
bility in the stationary distribution, then the improvement rate may improve. One of the
most straight-forward kernels is thesymmetric selectionkernel, here where proposed
position switches are selected uniformly random from the set of possible changes.
Proposing with a bias, e.g. for the stationary distribution, may replace this.

The long-term results of the Metropolis-Hastings approach, proposing switches be-
tween nodes uniformly random, have already been simulated well in [9], partly also
here in section 2. What we try to do here is to characterize how the algorithm improves
navigability. Remember that in the asymptotic case (when the number of steps go to∞)
we will obtain the sought distribution with any reasonable (irreducible and aperiodic)
selection kernel, starting from any state. But what we also need to take into account is
when the selection kernel may be differing in practice on a shorter time-scale. The idea
from now on will be to run the algorithm until we get results that aregood enoughin
practice. This view also lets us compare the improvement speed of different methods
by simulation.

3.2 Time to slow mixing

To begin with, we try to evaluate the convergence rate of the algorithm by studying
how many iterations are needed until we see clear signs that the main improvement has
been done. The bounds on this are arbitrary; either one could compare the results after
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a very long time, the alternative is to run the chain until the improvement has slowed
done and a phase of slow improvement begins.

What quantities we could expect the algorithm to improve is at least three-fold.
We study the average length and success rate just as described in section 2.1. For
each of these 3 quantities, we want to study how fast the algorithm will effect them
and how long it takes before it (roughly) stops improving. This leads us to study the
convergence rate; that is the number of iterations needed by the algorithm before the
main improvement has been done. Now we present two different criteria for this.

3.3 Bounding on improvement rate

With this stop criteria, we stop the algorithm when the following two criteria are met
(for a graph withN nodes):

1. The success rate does not increase more than a fractionk during the lastM
proposedrounds (timesN steps) of the chain

2. Same as above, but for the average path length

Other bounds could be put on things such as the energy function, or the variance,
quantiles etc. This indicates that the Metropolis Hastings algorithm no longer makes
large improvements on performance. We typically usek = 0.02 as a numerical trade-
off between sampling accuracy and computation time, over at least 100roundsof the
Markov chain. Note that we scale the interval in number of chain steps as the network
size grows, using rounds seems more natural especially from the view of a distributed
algorithm. With this interval we evaluate the change of the graph performance.

3.4 Bounding on ideal performance

Another way to design a rule for comparing performance is to stop the algorithm when
performance is within a bound of the performance in the initial (ideal) model. We
cannot expect to recover the optimal embedding due to the complex search problem, but
in practice it is enough to get a model close to the potentially best configuration. That
is after all what we are after from the beginning when trying to sample the posterior
distribution.

3.5 Method

A set of disconnected graphs with different sizes were created, edges were then added
from the Kleinberg distribution as before. Before we shuffle the positions of the nodes,
we measure the initial performance on average length and success rates (Lideal, srideal).
Then the node positions were randomly shuffled. Each graph is given to the Metropolis-
Hastings algorithm and once for each stop criteria. The evaluation was done by at-
tempting to route105 times between two uniformly random nodes. If the network met
the convergence criteria, we would terminate the algorithm for this graph.

The bound on improvement rate parameterk was set to0.02 over100 rounds. The
interval at where the improvement is measured and evaluated were set as a tradeoff
between accuracy of change and accuracy of comparison (between different network
sizes). The bound on the ideal model was run until the following criteria were met

1. sr > 0.9srideal
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2. L < 2Lideal

which means that we stop when the performance of average length is within twice
the length of the ideal model, and that we have at least90% of the ideal success rate.
For all our simulations with the ideal-bound criteria the bound on average length took
longest to achieve.

3.6 Results and evaluation

Results from the simulations are shown in figures 5-8. Figure 5 shows us the gap
between the ideal model and the shuffled case (the situation where we have not fitted
the graph well with geographical information). This is what we want the algorithm
to reduce well in a number of steps as small as possible. For smaller graphs we can
see (fig 8) that the bound on process improvement takes more steps before it stops,
and that performance is better when stopping (fig 6). The explanation may be that
the smaller the graph, a higher fraction of switch pairs may be proposed on average
(the number of steps in a round grows linearly with size, number of potential pairwise
switches quadratically) – leading to an easier way to find good switches to keep up an
improvement rate.

However, we can see that the bound on ideal performance becomes the most re-
strictive criteria when we scale the size of the graph. We also note that the number of
steps to reach this criteria clearly grows faster than linearly (since number of steps in a
round scales with the network size).

We can thus conclude that the bound on ideal performance is the most is best at
guaranteeing a bounded satisfactory solution (this is not surprising since the bound is
explicit on the performance). The bound on improvement may still tell us something
since it is less restrictive for larger sizes and we reach it faster, which would tell us
about when agents stop seeing large improvements in such a network. It also has an
advantage of using it for instances where we dont have access to the ideal performance,
such as the experiments on random graphs done by Sandberg [9].

The conclusion is that it may be useful to keep both the criteria for later simulations
since the may show slightly different things about the results.

3.7 Raised questions

In summary, there are several questions of interest involving our two stop criteria:

1. How does the network size affect the number of Metropolis-Hastings iterations
needed? This seems to vary with different criteria, can we make it vary with
different switching methods? The same question holds for the number of actual
(accepted) switches that is needed.

2. What would be the best way to measure improvement? The usage of different
stop criteria may have impact on how different methods are evaluated. Evalua-
tion on several different criteria may also be used to mix methods.

3. Can we characterize the “good” switches that get accepted with the uniform
selection method? It may be used for improving acceptance rate. Is there a
selection kernel that is more efficient?

We will try to tackle these questions partly in the next section.
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Figure 5: Avgerage lengths when stop criteria reached, compared against shuffled per-
formance. Averaged over 10 runs.
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Averaged over 10 runs.
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4 Local selection

As we have seen, the Metropolis-Hastings algorithm will give bias for configurations
where edges cover less distance with respect to the base lattice. This can also be for-
mulated as that the position of a node is preferred to other positions when it is close to
the positions taken by neighbors in the graph. Our strategy will be to propose position
switches that direct the Markov chain this way. In this section we experiment with dif-
ferent ways of doing this, and we will be working with informationlocal to the nodes
which may fit well with distributed implementations.

4.1 Approach for improvement

Since we want to improve the number of steps needed for the algorithm to reach a good
result, a first attempt is to propose those switches that have a high probability of being
accepted (that have a higher probability in the stationary distributionπ). We see from
Equation 6 that a direct way to improve the accept rate is to make the edges in the
proposed configuration span less distance in the lattice than the current configuration.

Since the selection kernel can be almost arbitrarily selected, but still have our de-
sired stationary distribution (at least in the theoretical asymptotic case, see [4] and
Appendix A), we can see what decisions can be taken for switches that depend on in-
formation local to their neighborhoods. This makes it possible to design strategies that
work on only local information at each node, thus making a decentralized implemen-
tation an option as before.

One idea is that a node would propose switching to a position to minimize the
energy function. This will be a direct attempt to minimize the log sum (or maximize
Equation 2) of distances to its neighbors, thus reducing the energy function by only
looking at the local neighborhood. We will, however, not restrict ourselves only to
minimizing log sums but study other ways as well. We will use the following notation
when doing a position switch betweenx andy:

• x: a random (uniformly selected) node in the graph

• x∗: a node holding a position that minimizes the distances to the neighbors ofx,
according to some2 minimization method. There may be several such positions,
x∗ ∈ {x′ ∈ V : s.t.φ(x′) minimizes distances to neighbors ofx}

• y: a node that gets selected byx for proposed position switch, based on the local
information ofx

• φ is the configuration as before, that for each nodex ∈ V assigns it a position in
the lattice

• x, y-switch: from any configurationφ this is the set of configurations where any
φ′ we haveφ(x) = φ′(y), φ(y) = φ′(x), and∀z 6=x,y.φ(z) = φ′(z).

• dφi(x, y) is the distance in the base lattice between any two nodesx andy under
configurationφi (egdφi(x, y) = |φi(x)− φi(y)|)

• Φ(a, b, σ2) denotes the distribution function for a Gaussian centered on b

2Typically the log sum, but we also attempt other methods
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Note that the proposed new positionφ(y) for x does not have to correspond exactly
to φ(x∗) to propose a better configuration, it may also be close to make the distances
covered smaller. This approach will also be evaluated to examine how well this needs
to work.

4.2 Directing position switches

Computing the positionφ(x∗) for a nodex that would minimize the distances to its
neighbors in the lattice can be done in various ways. Then that position may be the
basis of a switching strategy that attempts proposes a switch using this position. There
may be some restriction on the possibility to directly switch with this position, in order
to make the Markov chain irreducible, which will be discussed below.

Computing a minimizing position may of course be done by a brute-force approach,
but when we scale the system this is not not an efficient and reasonable method. When
we have no explicit way to solve this then another approach is to use approximative
schemes.

The actual problem of finding a minimized position can be formulated as a min-
imization problem like the following. For a nodex, we are seeking positionφ(x∗),
which minimizes the sum of log distances between the position ofx and its neighbors
in the base lattice. Since we have a lattice with periodic boundary conditions, for each
position there are more than one directions to go when computing the distance. We
take three different approaches to minimize the distances between aselecting nodex
and its neighbors:

1. Minimization of the log sum of the edge distances, sampling with a Gaussian
(theconcavemethod)

2. Minimization of the sum of squared edge distances, sampling with a Gaussian
(themin-squaresmethod)

3. Minimization of the log sum of the edge distances, mixed with selection uni-
formly (themixedmethod)

For each of the methods we begin by selecting a nodex uniform at random from the
graph. It is then the neighbors, local information, of this node that is used to sample a
nodey to involve in a switch. This lets us define the switch in various ways that we will
evaluate in each Metropolis-Hastings step. Methods 1 and 3 depend on minimizing a
sum of concave functions (the log-sum of distances). We have found no efficient way
to solve for this in the discrete case (other than the brute-force method). However, since
the impact of the distances grows concavely one approximation can be to always select
a targetnext tothe position of a random neighbor ofx. This will be our approximation.
Method 2 (minimizing the sum of squares) can however be computed efficiently as a
mean on intervals.

After we have computed this positionφ(x∗) (or set of positions) for a method that
minimizes the criteria on distances forx, we need to propose an actual switch. The first
two methods use a Gaussian, and the the third uses an element of uniformly selecting
the switch mixed with a very directed approach. We now go on and describe how this
is used.
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4.3 Switching randomness and irreducibility

To keep the accept rate high (to not reject too many proposed switches with equation 4)
and the chain to be easily irreducible (it is not clear that the chain irreducibility would
hold otherwise) these methods do not exclusively try to switch the positions taken by
a node and the positions computed that minimize distances to its neighbors. What we
try to ensure is that nodes propose position switches that are likely to be accepted with
a high probability rather than just uniformly random sampling (as in section 2), but
still allows for proposals “uphill” in the energy landscape. This means that we draw
positions from a distribution biased towards a better configuration.3

So in a decentralized setting what we do with a nodex drawn uniformly at ran-
dom is to attempt positioning it close tox∗, by proposing a position as a reasonable
approximation toφ(x∗). For the first two methods (concave and min-squared), we
have chosen the normal distribution centered atx∗, and with the variance depending
on how far nodex is from the desired center. The idea is that nodes can move gradually
closer to a desired position on the graph; being far from one’s center makes a node put
let restrictive bounds on where it tries to end up. The third (mixed) method instead
uses afraction of selecting positions uniformly random, otherwise directly attempting
a switch to the position that minimizes the edge distances for it, thus also enabling
backward steps of the chain.

4.4 Concave selection

This method tries to approximately minimize the sum of log distances between a node
x and its neighbors by applying a Gaussian around the position of a neighbor selected
uniformly random. Given thatx is seen as the selecting node,y is drawn by its position
from the normal distributionN(φ(x∗), λ · dφ(x, x∗)). It is thus proportional to the
distance to the center of the normal distribution, whereλ is a parameter for the strength
of proportionality. 4 This defines how anx, y-switch is proposed in this method, and
let φ′ be such anx, y-switch ofφ when a node to switch position with is selected this
way. The transition probabilities will then depend both on the degree of the nodes
involved and on several positions (the number of neighbors) that are seen as positions
to get close to. To evaluate the Metropolis-Hastings chain we get

α(φ, φ′) =

{
1
N

(
v(x,y,φ)

deg(x) + v(y,x,φ)

deg(y)

)
if φ′ is x, y-switch ofφ

0 otherwise
(7)

wheredeg(·) denotes degree of a node and

v(a, b, φ) =
∑

n∈Na

Φ(φ(b), φ(n), λ · dφ(a, n)) (8)

andNa denotes the set of neighbors ofa. The interpretation ofv is that we need to
take into account each neighbor that is near the position we’d like to switch to, since
we can potentially allow for several neighbors making us propose a switch to the same
position.

3This is also pragmatic in the sense that a node in a distributed implementation may not be able to reach
a specific target, but the goal is to ask for a switch that is approximately good.

4The motivation for this is roughly: if a node is far away on the lattice then the probability should also be
reasonably large when the reverse step of the chain is evaluated withα(φ′, φ).
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Given a proposedx, y-switch, we accept the proposed stateφ′ with probability

β(φ, φ′) = min


1, θ ·

∏

i∈E(x∨y)

d(φ(xi), φ(yi))k

d(φ′(xi), φ′(yi))k


 (9)

wherexi, yi are the endpoints on the lattice of edgei connected to the nodes and

θ =
deg(y)v(x, y, φ′) + deg(x)v(y, x, φ′)
deg(y)v(x, y, φ) + deg(x)v(y, x, φ)

(10)

4.5 Min-Square selection

The idea of this method is to propose switches that minimize the sum of squared dis-
tances to neighbors. This is not directly targetting the energy function, but we may still
hope for some improvement. Letx be a node that has been chosen uniformly random,
andφ(x∗) be the position that minimizes the sum of squared distances to neighbors
of x. Assume that we have proposed a switch betweenx and y under the current
stateφ, based onφ(x∗), wherey is drawn by its position from the normal distribution
N(φ(x∗), λ · dφ(x, x∗)). λ is also a parameter as in the previous method. We now
wish to evaluate the Metropolis-Hastings chain according to this method of making an
x, y-switch. To evaluate the Metropolis-Hastings chain we get

α(φ, φ′) =
{

1
N (r(x, y, φ) + r(y, x, φ)) if φ′ is x, y-switch ofφ
0 otherwise

(11)

where

r(a, b, φ) =
1

|Ma|
∑

i∈Ma

Φ(φ(b), φ(i), λ · dφ(a, i)) (12)

wherer(a, b, φ) represents the probability under a configurationφ that, given nodea
has first been selected, we then selectb (by its position in the lattice) with applying
the Gaussian aroundφ(a∗). Ma is the set of positions minimizing the sum of squared
distances to positions taken by its neighbors. Computingα(φ′, φ) depends on the state
φ′ whereφ′(x∗) andφ′(y∗) will be the same unless if switching with neighbors. Given
anx, y-switch we accept the proposed stateφ′ with

β(φ, φ′) = min


1, η ·

∏

i∈E(x∨y)

d(φ(xi), φ(yi))k

d(φ′(xi), φ′(yi))k


 (13)

where

η =
r(x, y, φ′) + r(y, x, φ′)
r(x, y, φ) + r(y, x, φ)

(14)
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4.6 Mixed selection

The idea of this method is to propose good switches between nodes most of the time,
which we choose for a node to be positioned next to the position a random neigh-
bor takes on the lattice. The method is to use a mix between directed switches (that
minimize distances very well) and proposing switches uniformly at random. This also
makes the chain irreducible. The method is a one-parameter model, where we first
pick one nodex uniformly random. Then with probabilityp (the parameter) we make
a selection uniformly random for a node to involve in switching, and with probability
1 − p we make a directed switch to a node that sits next to one of the neighbors ofx.
To guarantee the chain to be irreducible it should be possible to select the parameter
arbitrarily small but larger than 0.

Let us assumex andy are involved in anx, y-switch under this selection kernel.
φ is the current state,φ′ is the state where the positions ofx andy are switched as
described previously. Thenα depends on whether thex andy proposed are next to
each other’s neighbors or not.5

Evaluating Metropolis-Hastings is done as

α(φ, φ′) =
{

1
N (w(x, y, φ) + w(y, x, φ)) if φ′ is x, y-switch ofφ
0 otherwise

(15)

where

w(a, b, φ) =

{
p

N−1 + 1−p
deg(a)

Na,b

Dk
if φ(b) next to graph neighbor ofa

p
N−1 otherwise

(16)

wheredeg(a) denotes the degree of nodea, andNa,b is the number of neighbors ofa
that take positions next toφ(b) in the lattice. A factor ofDk appears depending on the
number of neighbors a node can take in ak-dimensional lattice.

As before, we accept the proposed stateφ′ with

β(φ, φ′) = min


1, σ ·

∏

i∈E(x∨y)

d(φ(xi), φ(yi))k

d(φ′(xi), φ′(yi))k


 (17)

where

σ =
w(x, y, φ′) + w(y, x, φ′)
w(x, y, φ) + w(y, x, φ)

(18)

4.7 Method

We initialized a number of small-worlds graphs where edges were added according to
the Kleinberg model. After initial performance measurement, the graphs were shuf-
fled and given to the Metropolis-Hastings algorithm. We then run the chain with uni-
formly selected position switches, periodically evaluating greedy routing until we have
reached our stop criteria (for both of the criteria defined in section 3).

5A node may also be assigned next to more than one of its graph neighbors in the lattice.
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Our method to compare the different methods is to see how many steps it takes to
reach the same performance (as the uniform method) where they stopped. For each of
the criteria we measure performance of average length and success rate when we have
reached the criteria. Then we take a copy of the initial graph and give this to each of
our local selection methods, and run the algorithms on the graph until we have reached
the same performance in average length and success rate. This will thus measure how
fast the different selection methods reach the same performance as defined by the two
criteria for the original algorithm. The period of evaluation is set to 50 rounds.

4.8 Selection width when using a Gaussian: from local towards
uniform

Studying the impact of the parameterλ as given in sections 4.4 and 4.5 means weight-
ing the distance between a node and the position(s) that minimizing distance to its
neighbors. Makingλ too small when proposingφ′ from φ would propose better con-
figurations, but on the other hand it may make proposing the reverse step withα(φ′, φ)
less likely. Thus this is a tradeoff for the greedyness of the search strategy, against
keeping the chain irreducible and with a good accept rate.

We study the parameter with a fixed network size and run the Metropolis-Hastings
algorithm for varyingλ to measure performance as in section 2.1. We then compare
the rounds needed, bounding on the ideal performance.

4.9 Rates in the mixed method

We also study the rate of uniformly selecting switches against to directing them next
to a neighbor in the mixed method. Since our model gives each neighbor a number of
neighbors that depends on the network size, the network size may have some effect on
the efficiency of the method. Starting with networks of varying sizes, for each graph
we run the mixed selection, bounding on the ideal criteria as before and varying the
parameter.

4.10 Results and evaluation

The main results are given in figure 9 and 10. The results on the different criteria
show slightly different things. First we can say that the min-square selection almost
always takes largest number of steps to reach the performance of both the stop criteria,
except for the smallest graph sizes we simulated (see the discussion of results in section
3). But interestingly it is still not prohibitively worser to use as we had expected.
From this we can speculate that either a general approach to make switches close to
neighbors of a node is quite robust (arranging nodes so that they indicate roughly where
their neighbors are), or that this depends on a clustering effect of neighborhoods on
the lattice. The clustering option, however, does not seem very likely since we have
measured the clustering coefficient as given in [1] which is equal or less than0.1 for
our generated graphs (far lower than what has been reported in real social networks).

The other results indicate a somewhat split view between the approximate methods
(concaveandmixed) that try to get close to randomly selected neighbors. Using the
first criteria the mixed method seems faster, but when we studied the results from the
second criteria the concave selection seems faster (especially for large sizes). This was
however easily attributed due to the requirement onsuccess ratefor the first criteria.
Since the success rate was required to get as high as the one measured when stopping,
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this got more impact than in the second criteria (typically success rate was close to1
when stopping, the second criteria requires maximally 90seemed to have just a slight
better performance on the success rate (and the other methods seemed to need some
time to just increase this alittle bit).

Figures 12 and 13 shows results of evaluating the selection witdh parameterλ for
the “Gaussian” selection methods and parameerp for the mixed selection. These have
been studied when selecting the parameters for the simulations. We can see that when
increasingλ the algorithm begins to give results more like switching with uniformly
drawn nodes. This makes the effect of sampling switches with a bias seem robust since
the effect can be seen over a relatively broad range of parameter values. For the mixed
selection, we can see how the effect for a large probability of switching with next-to-
neighbor nodes trails off for larger network sizes. This may be due to that we scale the
number of friends logarithmically, but varying model parameters are needed to study
this in larger detail. In practice we could see that the performance got very close (but
above) to the bound on the ideal model used, so a different bound may be needed for
studying this parameter better.

In summary, our methods improve the speed of the algorithm. We also have some
evidence for that the concave method seems best fit to reach the stronger (bounding on
ideal performance) stop criteria. All the runs seemed to indicate the same trend with
a low variance, but the conclusions so far are bounded by the computational resources
available to the author.
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Figure 12: Impact of parameterλ for concaveandmin-squareselection.N = 10000.
Rounds untilL < 2Lideal andsr > 0.9srideal. Averaged over 10 runs.
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Figure 13: Impact of parameterp for mixed selection. Rounds to reach Rounds until
L < 2Lideal andsr > 0.9srideal. Averaged over 10 runs.

5 Generalizing position switching

It may also be possible to include more than two nodes in the position switches that
have so far defined the transitions of the Markov chain. In this section we consider how
this could work and if this may be practical.

Let us first consider to define the neighbor relation on the chain wherek different
nodesx0, x1, ..., xk−1 are involved. This givesk! configurations to select among for
the next state of the chain (all different permutations of the positions). In the main
problem discussed before we have considered an assignment onSV of the values
S = {0, 1, ..., N−1} to each node inV , where each value may be associated only once
to each node byφ. Now we consider a subset of assignments includingk different val-
ues fromS andk different nodes fromV . The notation then isV ′ = {x0, x1, ..., xk}
and a set of valuesS′ = {φ(x0), φ(x1), ..., φ(xk−1)}, and we are considering an as-
signmentS′V

′
. Note that this case also contains all the possible position switches

containingfewerthank nodes changing positions. E.g. a chain withk = 3 also gives
the possibility to only switch positions between 2 of the nodes involved (one of the
nodes stays at its position in the proposed configuration).

5.1 Uniform k-switching

How do we design a selection kernel involving k nodes? One way may be draw k
nodes uniformly at random, propose a switch based on the order in which we drew
these nodes, and then consider all thek! different ways in which the nodes may switch
positions among each other. Another way which we will use here is to evaluate this
the freedom of consideringk! different possible configurations (whenk is relatively
small).
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Assume that k nodes have been selected uniformly at random. We are now free to
evaluate each and all the differentk! configurations resulting from this switch, as long
as the computation is practical. One way is to draw among these randomly, something
that seems equivalent to the discussion above, but another approach that should take
us closer to minimizing the log sum is to give bias for the configuration resulting in
the smallest log sum of edge distances. This is also local information, as in previous
examples, however the information is spread out overk nodes involved (instead of
previously two nodes as in section 4.

With largerk, this quickly becomes heavier to simulate for a chain and the number
of nodes involved becomes very large. The most direct way to sample a good configu-
ration in this case seems to revert to the initial problem (withk = N ), and probably to
run the Metropolis-Hastings chain all over again.

5.2 Example: Uniform 3-switching

As an experiment we attempt letting 3 nodes switch at once. This does not seem un-
managable, even in a distributed implementation. When we have uniformly selected 3
nodes, we evaluate all of the 6 configurations and randomly draw a sample depending
on which such configuration is best at minimizing the log sum. Our switching uses
one parameterp between 0 and 1 which denotes the probability to draw one of the
allowed configurations uniformly random. Otherwise we draw the best (minimizing)
configuration.

Let the configurationφ be the current state of the chain as before, and letx,y,z be
three uniformly drawn nodes. In all the different ways of drawing the nodes we will
use the same switching scheme which makes the order unimportant. What guides the
selection is what the nodes preferafter evaluationof the different configurations. Let
φ′ be the configuration proposed as above. To evaluate the Metropolis-Hastings chain
we get

α(φ, φ′) =
{ 6

n(n−1)(n−2)u(φ, φ′) if φ′ x,y,z-switch ofφ
0 otherwise

(19)

whereu(φ, φ′) depends on whether the configuration proposed is best or not

u(φ, φ′) =
{

p/6 + (1− p) if φ′ is the best available configuration
p/6 otherwise

(20)

For each state proposed as with the now describedα we accept it with

β(φ, φ′) = min


1,

u(φ′, φ)
u(φ, φ′)

∏

i∈E(x∨y∨z)

d(φ(xi), φ(yi))∆

d(φ′(xi), φ′(yi))∆


 (21)

where∆ is the dimension of the lattice andE(x ∨ y ∨ z) denotes the edges connected
to the three nodes in the switch. Generalizing this scheme can be done easily, but in
practice it quickly becomes heavy to simulate whenk grows.
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5.3 Method

First we compare the new method against uniformly selecting two nodes (as previously
described in section 1.5.4). We run the dynamics with the stop criteria that bounds on
the ideal performance. When reached we take a copy of the initial graph and run
the dynamics again with 3-switching to reach the same goal as where the previous
dynamics was stopped.

5.4 Results and evaluation

The results are shown in figures 14 and 14. We can see that giving two nodes biased
selection of switching targets (for minimizing the log sum) gives more impact so far
than considering one more node uniformly selected (but with bias for resulting config-
uration).

We note that fewer steps are typically required to reach performance at the second
stop criteria. But the implications are more complicated in a distributed implementa-
tion, requiring more messages between nodes (and more nodes involved). Since each
step involves more nodes it is also not obvious that the steps taken by the chain is a
good measurement on the speed of the process.
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Figure 14: Comparing 3-uniform against 2-uniform. Rounds untilL < 2Lideal and
sr > 0.9srideal. Averaged over 5 runs.
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until L < 2Lideal andsr > 0.9srideal. Averaged over 5 runs.

6 Conclusion

The main results of this thesis are three new selection kernels that depend on the po-
sition of a node and its neighbor positions in the lattice. Each of the three methods
were shown to perform better than selecting switches uniformly random. The methods
that sought to minimize the log sum of lengths covered by edges performed better than
minimizing sum-of-squared distances, as expected. But minimizing sum-of-squared
distances did not perform prohibitively worse and still clearly better than the uniform
method.

We have also extended the Metropolis-Hastings selection kernel to include an ad-
ditional node uniformly in each switch of the algorithm. The results improved in the
number of chain steps, but did not improve as well as proposing switches with a bias
for minimizing distances.

There are several topics that are open for further investigation. Our results de-
pend on precisely being able to propose switches between the nodes according to the
selection kernels. Investigating how well this would work in a distributed implementa-
tion, especially when the graph is not reasonable navigable, is important for practical
considerations. There are still reasons to be optimistic since two of our methods are
approximatively directed to produce better switches.

When involving more nodes in a switch other questions may appear on how these
methods can be used in practice. We have used one rather direct way to involve more
nodes, but there seems to be several other ways to do this, as well as the possibility to
direct switches when including more nodes (as we have done with two nodes). Consid-
ering how to use this in a decentralized implementation, factors such as the number of
messages that are needed between nodes in a graph to make switching efficient could
be studied and be used as a comparison method.
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The results so far are all using one specific method for switching until certain
bounds were reached. It should also be possible to use different methods in differ-
ent phases. Some methods may have more impact in the starting configuration of a
network whereas another strategies may be better when the algorithm has made a net-
work improve on navigability. Another way to vary the switching may be to use the
Simulated Annealing approach with an annealing schedule.

We also believe that using these methods in a decentralized and distributed way to
organize overlay networks may depend on cooperation with peers keeping to a switch-
ing protocol. Making a model with incentives for and against switching positions may
open for studying game theoretic situations in such networks.

Finally, one should also be aware about that the results depend on networks gener-
ated by the Kleinberg model. Evaluating the methods on wider models and real-world
data is important, since practical usability of these methods should depend a lot on how
the underlying network has been formed.
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A Metropolis-Hastings: role of the selection kernel

Theorem A. The Markov chain of the Metropolis-Hastings algorithm given in section
1.5.3 hasπ as the stationary distribution, independent of the selection kernelα.

Proof. We will show this by showing that the chain is reversible, that is∀i, j : πiPi,j =
πjPj,i. From this the equation for stationarityπ = πP follows directly.

Let a statek be theneighborto i if it can be proposed fromi directly byα. Using
the form of Metropolis-Hastings as given in section 1.5.3 we get the transition matrix
by

Pi,j =





α(i, j)β(i, j) if i 6= j are neighbors
1−∑

k α(i, k)β(i, k) i = j andi, k are neighbors
0 otherwise

This is rewritten as

Pi,j =





α(i, j)min
(
1,

πjα(j,i)
πiα(i,j)

)
if i 6= j are neighbors

1−∑
k α(i, k)min

(
1, πkα(k,i)

πiα(i,k)

)
i = j andi, k are neighbors

0 otherwise

What we need to do is to show that the chain is reversible. For the second and third
case this is easily shown; equality holds directly withi = j and in the null case. For
the first case, we rewriteβ(i, j) = min(1, z) wherez = πjα(j,i)

πiα(i,j) . We need to check
thatπiPi,j = πjPj,i holds in the two cases wherez < 1 andz ≥ 1.

Casez < 1:

πiPi,j = πiα(i, j)β(i, j) =
πiα(i, j) min(1, z) =

πiα(i, j)z =

πiα(i, j)
πjα(j, i)
πiα(i, j)

=

πjα(j, i) (22)

πjPj,i = πjα(j, i)β(j, i) =
πjα(j, i) min(1, z−1) =

πjα(j, i) (23)

Casez≥ 1:
Follows similarly (by the same method).

Thus it can be concluded that the chain has the stationary distributionπ that does
not depend onα, and that we are free to design it with respect to other constraints of
the chain. If the chain needs to be ergodic (ie. to be able to start from any possible con-
figuration (distribution) and converge towards the stationary distribution) the neighbor
relationα still needs to allow for it to be irreversible and aperiodic.
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